Bioinformatics analysis of potential key ferroptosis-related genes involved in tubulointerstitial injury in patients with diabetic nephropathy

糖尿病肾病患者肾小管间质损伤潜在关键铁死亡相关基因的生物信息学分析

阅读:7
作者:Li-Li Ma, Yu Bai, Wen-Hu Liu, Zong-Li Diao

Abstract

Diabetic nephropathy (DN) is the primary complication of diabetes mellitus. Ferroptosis is a form of cell death that plays an important role in DN tubulointerstitial injury, but the specific molecular mechanism remains unclear. Here, we downloaded the DN tubulointerstitial datasets GSE104954 and GSE30529 from the Gene Expression Omnibus database. We examined the differentially expressed genes (DEGs) between DN patients and healthy controls, and 36 ferroptosis-related DEGs were selected. Pathway-enrichment analyses showed that many of these genes are involved in metabolic pathways, phosphoinositide 3-kinase/Akt signaling, and hypoxia-inducible factor-1 signaling. Ten of the 36 ferroptosis-related DEGs (CD44, PTEN, CDKN1A, DPP4, DUSP1, CYBB, DDIT3, ALOX5, VEGFA, and NCF2) were identified as key genes. Expression patterns for six of these (CD44, PTEN, DDIT3, ALOX5, VEGFA, and NCF2) were validated in the GSE30529 dataset. Nephroseq data indicated that the mRNA expression levels of CD44, PTEN, ALOX5, and NCF2 were negatively correlated with the glomerular filtration rate (GFR), while VEGFA and DDIT3 mRNA expression levels were positively correlated with GFR. Immune infiltration analysis demonstrated altered immunity in DN patients. Real-time quantitative PCR (qPCR) analysis showed that ALOX5, PTEN, and NCF2 mRNA levels were significantly upregulated in high-glucose-treated human proximal tubular (HK-2) cells, while DDIT3 and VEGFA mRNA levels were significantly downregulated. Immunohistochemistry analysis of human renal biopsies showed positive staining for ALOX5 and NCF2 protein in DN samples but not the controls. These key genes may be involved in the molecular mechanisms underlying ferroptosis in patients with DN, potentially through specific metabolic pathways and immune/inflammatory mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。