Modifying the Secretome of Mesenchymal Stem Cells Prolongs the Regenerative Treatment Window for Encephalopathy of Prematurity

修改间充质干细胞的分泌组延长早产儿脑病的再生治疗窗口

阅读:4
作者:Josine E G Vaes, Suzanne M Onstwedder, Chloe Trayford, Eva Gubbins, Mirjam Maas, Sabine H van Rijt, Cora H Nijboer

Abstract

Clinical treatment options to combat Encephalopathy of Prematurity (EoP) are still lacking. We, and others, have proposed (intranasal) mesenchymal stem cells (MSCs) as a potent therapeutic strategy to boost white matter repair in the injured preterm brain. Using a double-hit mouse model of diffuse white matter injury, we previously showed that the efficacy of MSC treatment was time dependent, with a significant decrease in functional and histological improvements after the postponement of cell administration. In this follow-up study, we aimed to investigate the mechanisms underlying this loss of therapeutic efficacy. Additionally, we optimized the regenerative potential of MSCs by means of genetic engineering with the transient hypersecretion of beneficial factors, in order to prolong the treatment window. Though the cerebral expression of known chemoattractants was stable over time, the migration of MSCs to the injured brain was partially impaired. Moreover, using a primary oligodendrocyte (OL) culture, we showed that the rescue of injured OLs was reduced after delayed MSC coculture. Cocultures of modified MSCs, hypersecreting IGF1, LIF, IL11, or IL10, with primary microglia and OLs, revealed a superior treatment efficacy over naïve MSCs. Additionally, we showed that the delayed intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, improved myelination and the functional outcome in EoP mice. In conclusion, the impaired migration and regenerative capacity of intranasally applied MSCs likely underlie the observed loss of efficacy after delayed treatment. The intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, is a promising optimization strategy to prolong the window for effective MSC treatment in preterm infants with EoP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。