Dextran‑coated superparamagnetic iron oxide nanoparticles activate the MAPK pathway in human primary monocyte cells

葡聚糖包覆的超顺磁性氧化铁纳米粒子激活人类原代单核细胞中的 MAPK 通路

阅读:5
作者:Qihong Wu, Tianyu Miao, Ting Feng, Chuan Yang, Yingkun Guo, Hong Li

Abstract

With the increase in applications of superparamagnetic iron oxide nanoparticles (SPIONs) in biomedicine, it is essential to investigate the bio‑security of these nanoparticles, especially with respect to the human immune system. In the present study, the biological effects of dextran‑coated superparamagnetic iron oxide nanoparticles (Dex‑SPIONs) on human primary monocyte cells were evaluated. The results of the present study demonstrated that Dex‑SPIONs can be identified in phagosomes or freed in the cytoplasm and did not affect cell viability or induce apoptosis. Notably, there were certain bulky vacuoles and a number of pseudopodia from the cell membrane, suggesting potential activation of human monocyte cells. In addition, the expression levels of pro‑inflammatory cytokines interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α were also increased following treatment with Dex‑SPIONs. Simultaneously, the phosphorylation levels of mitogen‑activated protein kinase (MAPK) p38, c‑Jun N‑terminal kinase 1 and extracellular signal regulated kinase were markedly enhanced following nanoparticle exposure and MAPK inhibitors could abate the production of IL‑1β and TNF‑α. The results of the present study demonstrated that Dex‑SPIONs could activate human monocyte cells and that activation of MAPK pathway may be involved in these effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。