The vitamin D receptor regulates mitochondrial function in C2C12 myoblasts

维生素 D 受体调节 C2C12 成肌细胞的线粒体功能

阅读:5
作者:Stephen P Ashcroft, Joseph J Bass, Abid A Kazi, Philip J Atherton, Andrew Philp

Abstract

Vitamin D deficiency has been linked to a reduction in skeletal muscle function and oxidative capacity; however, the mechanistic bases of these impairments are poorly understood. The biological actions of vitamin D are carried out via the binding of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) to the vitamin D receptor (VDR). Recent evidence has linked 1α,25(OH)2D3 to the regulation of skeletal muscle mitochondrial function in vitro; however, little is known with regard to the role of the VDR in this process. To examine the regulatory role of the VDR in skeletal muscle mitochondrial function, we used lentivirus-mediated shRNA silencing of the VDR in C2C12 myoblasts (VDR-KD) and examined mitochondrial respiration and protein content compared with an shRNA scrambled control. VDR protein content was reduced by ~95% in myoblasts and myotubes (P < 0.001). VDR-KD myoblasts displayed a 30%, 30%, and 36% reduction in basal, coupled, and maximal respiration, respectively (P < 0.05). This phenotype was maintained in VDR-KD myotubes, displaying a 34%, 33%, and 48% reduction in basal, coupled, and maximal respiration (P < 0.05). Furthermore, ATP production derived from oxidative phosphorylation (ATPOx) was reduced by 20%, suggesting intrinsic impairments within the mitochondria following VDR-KD. However, despite the observed functional decrements, mitochondrial protein content, as well as markers of mitochondrial fission were unchanged. In summary, we highlight a direct role for the VDR in regulating skeletal muscle mitochondrial respiration in vitro, providing a potential mechanism as to how vitamin D deficiency might impact upon skeletal muscle oxidative capacity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。