Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action

蜜蜂花叶提取物对东莨菪碱动物模型长期记忆的影响及作用机制评估

阅读:5
作者:Marcin Ozarowski, Przemyslaw L Mikolajczak, Anna Piasecka, Piotr Kachlicki, Radoslaw Kujawski, Anna Bogacz, Joanna Bartkowiak-Wieczorek, Michal Szulc, Ewa Kaminska, Malgorzata Kujawska, Jadwiga Jodynis-Liebert, Agnieszka Gryszczynska, Bogna Opala, Zdzislaw Lowicki, Agnieszka Seremak-Mrozikiewicz, Bo

Abstract

Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。