The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility

Wnt-5a 衍生的六肽 Foxy-5 通过靶向细胞运动抑制体内乳腺癌转移

阅读:6
作者:Annette Säfholm, Johanna Tuomela, Jeanette Rosenkvist, Janna Dejmek, Pirkko Härkönen, Tommy Andersson

Conclusions

These data provide proof of principle that the reconstitution of Wnt-5a signaling in breast cancer cells is a novel approach to impair breast tumor metastasis by targeting cell motility. In combination with existing therapies, this approach represents a potential novel therapeutic strategy for the treatment of breast cancer patients.

Purpose

An inherent problem in breast cancer treatment is that current therapeutic approaches fail to specifically target the dissemination of breast cancer cells from the primary tumor. Clinical findings show that the loss of Wnt-5a protein expression in the primary breast tumor predicts a faster tumor spread, and in vitro analyses reveal that it does so by inhibiting tumor cell migration. Therefore, we hypothesized that the reconstitution of Wnt-5a signaling could be a novel therapeutic strategy to inhibit breast cancer metastasis. Experimental design: We used in vitro techniques to show that 4T1 mouse breast cancer cells responded to the reconstitution of Wnt-5a signaling using our novel Wnt-5a mimicking hexapeptide, Foxy-5, in the same way as human breast cancer cells. Therefore, we could subsequently study its effect in vivo on the metastatic spread of cancer following the inoculation of 4T1 cells into mice.

Results

In vitro analyses revealed that both recombinant Wnt-5a and the Wnt-5a-derived Foxy-5 peptide impaired migration and invasion without affecting apoptosis or proliferation of 4T1 breast cancer cells. The in vivo experiments show that i.p. injections of Foxy-5 inhibited metastasis of inoculated 4T1 breast cancer cells from the mammary fat pad to the lungs and liver by 70% to 90%. Conclusions: These data provide proof of principle that the reconstitution of Wnt-5a signaling in breast cancer cells is a novel approach to impair breast tumor metastasis by targeting cell motility. In combination with existing therapies, this approach represents a potential novel therapeutic strategy for the treatment of breast cancer patients.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。