Through Reducing ROS Production, IL-10 Suppresses Caspase-1-Dependent IL-1β Maturation, thereby Preventing Chronic Neuroinflammation and Neurodegeneration

IL-10 通过减少 ROS 生成,抑制 Caspase-1 依赖的 IL-1β 成熟,从而预防慢性神经炎症和神经退行性病变

阅读:5
作者:Yun Gao, Dezhen Tu, Ru Yang, Chun-Hsien Chu, Jau-Shyong Hong, Hui-Ming Gao

Abstract

Chronic neuroinflammation contributes to the pathogenesis of Parkinson's disease (PD). However, cellular and molecular mechanisms by which chronic neuroinflammation is formed and maintained remain elusive. This study aimed to explore detailed mechanisms by which anti-inflammatory cytokine interleukin-10 (IL-10) prevented chronic neuroinflammation and neurodegeneration. At 24 h after an intranigral injection of lipopolysaccharide (LPS), levels of NLRP3, pro-caspase-1, pro-IL-1β, active caspase-1, and mature IL-1β in the midbrain were much higher in IL-10-/- mice than wildtype mice. Mechanistically, IL-10-/- microglia produced more intracellular reactive oxygen species (iROS) and showed more profound activation of NADPH oxidase (NOX2) than wildtype microglia. Meanwhile, suppression of NOX2-derived iROS production blocked LPS-elicited caspase-1 activation and IL-1β maturation in IL-10-/- microglia in vitro and in vivo. One month after intranigral LPS injection, IL-10-/- mice revealed more profound microglial activation and dopaminergic neurodegeneration in the substantia nigra than wildtype mice. Importantly, such PD-like pathological changes were prevented by IL-1β neutralization. Collectively, IL-10 inhibited LPS-elicited production of NOX2-derived iROS thereby suppressing synthesis of NLRP3, pro-caspase-1 and pro-IL-1β and their activation and cleavage. By this mechanism, IL-10 prevented chronic neuroinflammation and neurodegeneration. This study suggested boosting anti-inflammatory effects of IL-10 and suppressing NLRP3 inflammasome activation could be beneficial for PD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。