α‑synuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulum‑Golgi compartment

α-突触核蛋白通过引起内质网-高尔基区功能障碍诱导星形胶质细胞凋亡

阅读:6
作者:Mei Liu, Lixia Qin, Lili Wang, Jieqiong Tan, Hainan Zhang, Jianguang Tang, Xiangmin Shen, Liming Tan, Chunyu Wang

Abstract

Although previous work has demonstrated that the overexpression of wild‑type or mutant α‑synuclein (α‑syn) can induce cell death via a number of different mechanisms, including oxidative stress, dysfunction of the ubiquitin‑proteasome degradation system, mitochondrial damage and endoplasmic reticulum (ER) stress, research interest has primarily focused on neurons. However, there is accumulating evidence that suggests that astrocytes may be involved in the earliest changes, as well as the progression of Parkinson's disease (PD), though the role of α‑syn in astrocytes has not been widely studied. In the present study, it was revealed that the mutant α‑syn (A53T and A30P) in astrocytes triggered ER stress via the protein kinase RNA‑like ER kinase/eukaryotic translation initiation factor 2α signaling pathway. Astrocyte apoptosis was induced through a CCAAT‑enhancer‑binding protein homologous protein‑mediated pathway. In addition, Golgi fragmentation was observed in the process. On the other hand, it was also demonstrated, in a primary neuronal‑astroglial co‑culture system, that the overexpression of α‑syn significantly decreased the levels of glia‑derived neurotrophic factor (GDNF) and partly inhibited neurite outgrowth. Although direct evidence is currently lacking, it was proposed that dysfunction of the ER‑Golgi compartment in astrocytes overexpressing α‑syn may lead to a decline of GDNF levels, which in turn would suppress neurite outgrowth. Taken together, the results of the present study offer further insights into the pathogenesis of PD from the perspective of astrocytes, which may provide novel strategies for the diagnosis and treatment of PD in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。