Timosaponin AIII attenuates inflammatory injury in AGEs-induced osteoblast and alloxan-induced diabetic osteoporosis zebrafish by modulating the RAGE/MAPK signaling pathways

提莫沙皂苷 AIII 通过调节 RAGE/MAPK 信号通路减轻 AGEs 诱导的成骨细胞和变性毒素诱导的糖尿病骨质疏松斑马鱼的炎症损伤

阅读:7
作者:Nani Wang, Pingcui Xu, Xuping Wang, Weixuan Yao, Binjie Wang, Yuanzhao Wu, Dan Shou

Background

Advanced glycation end products (AGEs) deposition causes inflammatory injury in osteoblasts and contributes to diabetic osteoporosis. The receptor for advanced glycation end product/mitogen-activated protein kinase pathway (RAGE/MAPK) signaling pathway is closely linked to the pathogenesis of diabetic osteoporosis. Timosaponin AIII, a steroidal saponin isolated from Anemarrhena asphodeloides Bunge (Asparagaceae), shows anti-inflammatory and anti-osteoporosis effects.

Conclusion

These data clarified that timosaponin AIII attenuates diabetic osteoporosis via a novel mechanism involved suppressing the RAGE/MAPK signaling pathway. Our finding highlights the potential value of timosaponin AIII as an anti-diabetic osteoporosis agent.

Methods

An alloxan-induced diabetic osteoporosis zebrafish model was applied to investigate the effects of timosaponin AIII in vivo, and alendronate was used as a positive control. Moreover, related mechanisms were explored in primary rat osteoblasts. Molecular docking was applied to investigate the interactions between timosaponin AIII and RAGE.

Purpose

The present study was aimed to investigate the therapeutic effects of timosaponin AIII on diabetic osteoporosis and whether its effect is dependent on protecting osteoblasts against AGEs-induced injury via RAGE/MAPK signaling suppression.

Results

Timosaponin AIII treatment reversed alloxan-induced reduction in the mineralized area of the larvae head skeleton, accompanied by a decreased level of triglyceride and total cholesterol in the zebrafish. Additionally, AGEs significantly influenced RAGE expression, alkaline phosphatase activity, interleukin 1β expression, interleukin 6 expression, and tumor necrosis factor-α expression, and increased cell apoptosis. Timosaponin AIII significantly downregulated AGEs-induced interleukin 1β, interleukin 6, and tumor necrosis factor-α levels, and upregulated alkaline phosphatase and osteocalcin levels. Timosaponin AIII also significantly reduced the expression of RAGE and had additive effects on downstream P38, extracellular signal-regulated kinase and c-Jun N-terminal kinase in AGEs-induced osteoblast. Molecular docking predicted that hydrogen and hydrophobic interactions occurred between timosaponin AIII and RAGE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。