Role of Smad3 signaling in the epithelial‑mesenchymal transition of the lens epithelium following injury

Smad3 信号在损伤后晶状体上皮细胞上皮间质转化中的作用

阅读:9
作者:Fanlan Meng, Jun Li, Xiao Yang, Xiaoyong Yuan, Xin Tang

Abstract

Transforming growth factor‑β (TGF‑β) is important in the development of posterior capsule opacification (PCO), and inhibition of the TGF‑β pathway may represent a novel method of treating PCO. Drosophila protein, mothers against decapentaplegic homolog 3 (Smad3) is a phosphorylated receptor‑activated Smad required for the transmission of TGF‑β signals. Smad3 knockout (KO) disturbs the activation of TGF‑β signaling, thus inhibiting the onset of PCO. In the present study, lens epithelial cell (LEC) damage induced by extracapsular cataract extraction was simulated by puncture of the anterior capsule using a 26‑gauge hypodermic needle. The effect of Smad3 in the trauma‑induced epithelial‑mesenchymal transition (EMT) of the lens epithelium in Smad3‑KO and wild‑type (WT) mice was then observed. The expression levels of EMT markers and extracellular matrix components were measured in the two groups by reverse transcription‑quantitative polymerase chain reaction analysis, western blot analysis and immunofluorescence staining. Apoptosis was also detected in the punctured anterior capsule. The Smad3‑KO mice exhibited lower expression levels of α‑smooth muscle actin, lumican, osteopontin, fibronectin and collagen, compared with the WT mice. Additionally, the Smad3‑KO mice exhibited a higher percentage of apoptotic cells than the WT mice. Smad3 signaling was associated with the induction of trauma‑induced EMT, and Smad3 KO interfered with TGF‑β signaling pathway activation, but did not completely inhibit the trauma‑induced EMT in LECs. Therefore, Smad3 may be a target in the treatment of PCO and other fibrosis‑related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。