Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids

用于体外培养原代人类肠道类器官和子宫内膜类器官的全合成基质

阅读:6
作者:Victor Hernandez-Gordillo, Timothy Kassis, Arinola Lampejo, GiHun Choi, Mario E Gamboa, Juan S Gnecco, Alexander Brown, David T Breault, Rebecca Carrier, Linda G Griffith

Abstract

Epithelial organoids derived from human donor tissues are important tools in fields ranging from regenerative medicine to drug discovery. Organoid culture requires expansion of stem/progenitor cells in Matrigel, a tumor-derived extracellular matrix (ECM). An alternative completely synthetic ECM could improve reproducibility, clarify mechanistic phenomena, and enable human implantation of organoids. We designed synthetic ECMs with tunable biomolecular and biophysical properties to identify gel compositions supporting human tissue-derived stem/progenitor epithelial cells as enteroids and organoids starting with single cells rather than tissue fragments. The synthetic ECMs consist of 8-arm PEG-macromers modified with ECM-binding peptides and different combinations of integrin-binding peptides, crosslinked with peptides susceptible to matrix metalloprotease (MMP) degradation, and tuned to exhibit a range of biophysical properties. A gel containing an α2β1 integrin-binding peptide (GFOGER) and matrix binder peptides grafted to a 20 kDa 8-arm PEG macromer showed the most robust support of human duodenal and colon enteroids and endometrial organoids. In this synthetic ECM, human intestinal enteroids and endometrial organoids emerge from single cells and show cell-specific and apicobasal polarity markers upon differentiation. Intestinal enteroids, in addition, retain their proliferative capacity, are functionally responsive to basolateral stimulation, express canonical markers of intestinal crypt cells including Paneth cells, and can be serially passaged. The success of this synthetic ECM in supporting human postnatal organoid culture from multiple different donors and from both the intestine and endometrium suggests it may be broadly useful for other epithelial organoid culture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。