Integrative phosphatidylcholine metabolism through phospholipase A2 in rats with chronic kidney disease

慢性肾脏病大鼠通过磷脂酶A2进行磷脂酰胆碱的综合代谢

阅读:4
作者:Yan-Ni Wang, Zhi-Hao Zhang, Hong-Jiao Liu, Zhi-Yuan Guo, Liang Zou, Ya-Mei Zhang, Ying-Yong Zhao

Abstract

Dysregulation in lipid metabolism is the leading cause of chronic kidney disease (CKD) and also the important risk factors for high morbidity and mortality. Although lipid abnormalities were identified in CKD, integral metabolic pathways for specific individual lipid species remain to be clarified. We conducted ultra-high-performance liquid chromatography-high-definition mass spectrometry-based lipidomics and identified plasma lipid species and therapeutic effects of Rheum officinale in CKD rats. Adenine-induced CKD rats were administered Rheum officinale. Urine, blood and kidney tissues were collected for analyses. We showed that exogenous adenine consumption led to declining kidney function in rats. Compared with control rats, a panel of differential plasma lipid species in CKD rats was identified in both positive and negative ion modes. Among the 50 lipid species, phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC) and lysophosphatidic acid (LysoPA) accounted for the largest number of identified metabolites. We revealed that six PCs had integral metabolic pathways, in which PC was hydrolysed into LysoPC, and then converted to LysoPA, which was associated with increased cytosolic phospholipase A2 protein expression in CKD rats. The lower levels of six PCs and their corresponding metabolites could discriminate CKD rats from control rats. Receiver operating characteristic curves showed that each individual lipid species had high values of area under curve, sensitivity and specificity. Administration of Rheum officinale significantly improved impaired kidney function and aberrant PC metabolism in CKD rats. Taken together, this study demonstrates that CKD leads to PC metabolism disorders and that the dysregulation of PC metabolism is involved in CKD pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。