Methylphenidate exerts neuroprotective effects through the AMPK signaling pathway

哌甲酯通过 AMPK 信号通路发挥神经保护作用

阅读:7
作者:P Li, Y Huang, Y Yang, X Huang

Conclusions

MPH exerted protective activities against oxidative stress in the OGD/R model and ameliorated brain damage of rats in the middle cerebral artery occlusion model, at least in part, through activating the AMPK pathway. These data demonstrated neuroprotective properties of MPH and highlighted it as a potential therapeutic agent against cerebral ischemia-reperfusion injury.

Methods

In vitro oxygen-glucose deprivation/reperfusion (OGD/R) and in vivo cerebral ischemia-reperfusion models were established. Sprague-Dawley (SD) rats were randomly divided into four groups (n = 20): Sham, Model, and MPH (0.5 and 1 mg/kg). Rats in MPH groups were treated with 0.5 or 1 mg/kg MPH via intraperitoneal injection for 7 days. Rats in the Sham and Model groups were treated with PBS during the same period. Cell viability was measured using MTT assay. Apoptosis was detected by Annexin V/PI staining. Protein expression was detected by Western blot. The volume of cerebral infarction was detected by triphenyltetrazolium chloride (TTC) staining. The DNA damage in ischemic brain tissues was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay.

Purpose

Cerebral ischemia is the main cause of permanent adult disabilities worldwide. This study investigated the reparative effects and potential mechanisms of methylphenidate (MPH), a medication for the treatment of attention-deficit/hyperactivity disorder.

Results

MPH treatment significantly reduced OGD/R-induced cell damage, shown by the increased cell viability and decreased apoptotic rate. p-AMPK and p-ACC protein expression increased in the OGD/R model after MPH treatment. The addition of AMPK inhibitor largely abolished the neuroprotective effects of MPH, evidenced by the reduced cell viability, increased apoptotic rate, and decreased protein expression of p-AMPK as well as p-ACC. Moreover, MPH treatment significantly alleviated the cerebral ischemia-reperfusion injury and decreased apoptosis in brain tissues, which may be associated with the AMPK/ACC pathway. Conclusions: MPH exerted protective activities against oxidative stress in the OGD/R model and ameliorated brain damage of rats in the middle cerebral artery occlusion model, at least in part, through activating the AMPK pathway. These data demonstrated neuroprotective properties of MPH and highlighted it as a potential therapeutic agent against cerebral ischemia-reperfusion injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。