Formoterol decreases muscle wasting as well as inflammation in the rat model of rheumatoid arthritis

福莫特罗可减轻类风湿性关节炎大鼠模型中的肌肉萎缩和炎症

阅读:6
作者:Ana Belén Gómez-SanMiguel, Carolina Gomez-Moreira, María Paz Nieto-Bona, Carmen Fernández-Galaz, Maria Ángeles Villanúa, Ana Isabel Martín, Asunción López-Calderón

Abstract

Adjuvant-induced arthritis is an experimental model of rheumatoid arthritis that is associated with body weight loss and muscle wasting. β2-adrenergic receptor agonists are powerful anabolic agents that trigger skeletal muscle hypertrophy and have been proposed as a promising treatment for muscle wasting in human patients. The aim of this work was to determine whether formoterol, a selective β2-adrenoreceptor agonist, is able to ameliorate muscle wasting in arthritic rats. Arthritis was induced in male Wistar rats by intradermal injection of Freund's adjuvant. Control and arthritic rats were injected daily with 50 μg/kg sc formoterol or saline for 12 days. Body weight change, food intake, and arthritis index were analyzed. After euthanasia, in the gastrocnemius mRNA was analyzed by PCR, and proteins were analyzed by Western blotting. Arthritis decreased gastrocnemius weight, cross-sectional area, and myofiber size, whereas formoterol increased those variables in both arthritic and control rats. Formoterol decreased the external signs of arthritis as well as NF-κB(p65) activation, TNFα, and COX-2 levels in the gastrocnemius of arthritic and control rats. Those effects of formoterol were associated with a decreased expression of myostatin, atrogin-1, and MuRF1 and in LC3b lipidation. Arthritis increased the expression of MyoD, myogenin, IGF-I, and IGFBP-3 and -5 in the gastrocnemius. In control and in arthritic rats, treatment with formoterol increased Akt phosphorylation and myogenin levels, whereas it decreased IGFBP-3 expression in the gastrocnemius. These data suggest that formoterol has an anti-inflammatory effect and decreases muscle wasting in arthritic rats through increasing Akt activity and myogenin and decreasing myostatin, the p-NF-κB(p65)/TNF pathway, and IGFBP-3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。