High resolution maps of chromatin reorganization through mouse meiosis reveal novel features of the 3D meiotic structure

通过小鼠减数分裂进行的染色质重组的高分辨率图谱揭示了三维减数分裂结构的新特征

阅读:8
作者:Gang Cheng, Florencia Pratto, Kevin Brick, Xin Li, Benjamin Alleva, Mini Huang, Gabriel Lam, R Daniel Camerini-Otero

Abstract

When germ cells transition from the mitotic cycle into meiotic prophase I (MPI), chromosomes condense into an array of chromatin loops that are required to promote homolog pairing and genetic recombination. To identify the changes in chromosomal conformation, we isolated nuclei on a trajectory from spermatogonia to the end of MPI. At each stage along this trajectory, we built genomic interaction maps with the highest temporal and spatial resolution to date. The changes in chromatin folding coincided with a concurrent decline in mitotic cohesion and a rise in meiotic cohesin complexes. We found that the stereotypical large-scale A and B compartmentalization was lost during meiotic prophase I alongside the loss of topological associating domains (TADs). Still, local subcompartments were detected and maintained throughout meiosis. The enhanced Micro-C resolution revealed that, despite the loss of TADs, higher frequency contact sites between two loci were detectable during meiotic prophase I coinciding with CTCF bound sites. The pattern of interactions around these CTCF sites with their neighboring loci showed that CTCF sites were often anchoring the meiotic loops. Additionally, the localization of CTCF to the meiotic axes indicated that these anchors were at the base of loops. Strikingly, even in the face of the dramatic reconfiguration of interphase chromatin into a condensed loop-array, the interactions between regulatory elements remained well preserved. This establishes a potential mechanism for how the meiotic chromatin maintains active transcription within a highly structured genome. In summary, the high temporal and spatial resolution of these data revealed previously unappreciated aspects of mammalian meiotic chromatin organization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。