Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration

聚合物纳米纤维神经导管与层粘连蛋白结合用于周围神经再生

阅读:4
作者:Wei Chang, Munish B Shah, Gan Zhou, Kevin Walsh, Swetha Rudraiah, Sangamesh G Kumbar, Xiaojun Yu

Abstract

Artificial nerve guidance conduits (NGCs) are being investigated as an alternative to autografts, since autografts are limited in supply. A polycaprolactone (PCL)-based spiral NGC with crosslinked laminin on aligned nanofibers was evaluated in vivo post a successful in vitro assessment. PC-12 cell assays confirmed that the aligned nanofibers functionalized with laminin were able to guide and enhance neurite outgrowth. In the rodent model, the data demonstrated that axons were able to regenerate across the critical nerve gap, when laminin was present. Without laminin, the spiral NGC with aligned nanofibers group resulted in a random cluster of extracellular matrix tissue following injuries. The reversed autograft group performed best, showing the most substantial improvement based on nerve histological assessment and gastrocnemius muscle measurement. Nevertheless, the recovery time was too short to obtain meaningful data for the motor functional assessments. A full motor recovery may take up to years. An interesting observation was noted in the crosslinked laminin group. Numerous new blood capillary-like structures were found around the regenerated nerve. Owing to recent studies, we hypothesized that new blood vessel formation could be one of the key factors to increase the successful rate of nerve regeneration in the current study. Overall, these findings indicated that the incorporation of laminin into polymeric nerve conduits is a promising strategy for enhancing peripheral nerve regeneration. However, the best combination of contact-guidance cues, haptotactic cues, and chemotactic cues have yet to be realized. The natural sequence of nerve regeneration should be studied more in-depth before modulating any strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。