In vitro immunogenic profile of recombinant SARS-CoV2 S1-RBD peptide in murine macrophage and microglial cells

重组 SARS-CoV2 S1-RBD 肽在小鼠巨噬细胞和小胶质细胞中的体外免疫原性特征

阅读:5
作者:Adriano José Maia Chaves Filho, Paloma Marinho Jucá, Michelle Verde Ramo Soares, Caio Andrade de Oliveira, Raul Cavalcante de Sousa, Deniele Bezerra Lós, Remo Castro Russo, Juliana Navarro Ueda Yaochite, Danielle S Macedo

Background

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. Objectives: To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro.

Conclusion

RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.

Methods

Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. Findings: In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。