The siRNA silencing of DcR3 expression induces Fas ligand-mediated apoptosis in HepG2 cells

siRNA 沉默 DcR3 表达可诱导 HepG2 细胞中 Fas 配体介导的细胞凋亡

阅读:5
作者:Tuanjie Zhao, Yingchen Xu, Shulin Ren, Chaojie Liang, Xiaona Zhou, Jixiang Wu

Abstract

Dysfunctional Fas ligand (FasL) may inhibit the apoptosis of tumor cells. FasL contains two receptors, Fas and Decoy Receptor 3 (DcR3). DcR3 competitively binds to FasL over Fas, resulting in the inhibition of FasL-mediated apoptosis. Therefore, it was suggested that the downregulation of DcR3 expression enhances FasL-mediated apoptosis. In the current study, the expression of DcR3 was silenced in liver cancer HepG2 cells in order to study the effect of FasL on HepG2 cell activity and invasiveness. DcR3 siRNA knockdown HepG2 cells (KD), DcR3 blank plasmid control HepG2 cells and wild-type HepG2 cells (WT) were treated with FasL (10 ng/ml). Flow cytometry was used to detect changes in the cell cycle and apoptosis. MTS, clonogenic, wound healing and Transwell assays were performed to examine changes in cell activity, proliferation, migration and invasiveness. Reverse transcription polymerase chain reaction and western blot analysis were performed to measure the expression of DcR3, matrix metallopeptidase 9 (MMP9), vascular endothelial growth factor (VEGF)-C and VEGF-D. The results demonstrated that, compared with WT cells, the proportion of KD cells in the G2/M phase decreased following treatment with FasL. KD cells were more sensitive to FasL-induced apoptosis. Following treatment with FasL, the activity and proliferation, migration and invasion of KD cells were reduced, and the expression of MMP9, VEGF-C and VEGF-D decreased. Furthermore, it was demonstrated that DcR3 is involved in the proliferation and invasion of HepG2 cells, and this mechanism may be associated with the regulatory effect of the expression of MMP9, VEGF-C and VEGF-D; however, the exact mechanism of action remains unclear. FollowingDcR3 silencing, FasL-mediated apoptosis increased in HepG2 cells. Therefore, DcR3 combined with FasL may be a potential target for the treatment of liver cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。