Heme levels are increased in human failing hearts

人类心脏衰竭时血红素水平升高

阅读:4
作者:Arineh Khechaduri, Marina Bayeva, Hsiang-Chun Chang, Hossein Ardehali

Background

Iron is an essential molecule for cellular physiology, but in excess it facilitates oxidative stress. Mitochondria are the key regulators of iron homeostasis through heme and iron-sulfur cluster synthesis. Because mitochondrial function is depressed in failing hearts and iron accumulation can lead to oxidative stress, we hypothesized that iron regulation may also be impaired in heart failure (HF).

Conclusions

Despite global mitochondrial dysfunction, heme levels are maintained above baseline in human failing hearts.

Methods

We measured mitochondrial and cytosolic heme and non-heme iron levels in failing human hearts retrieved during cardiac transplantation surgery. In addition, we examined the expression of genes regulating cellular iron homeostasis, the heme biosynthetic pathway, and micro-RNAs that may potentially target iron regulatory networks.

Results

Although cytosolic non-heme iron levels were reduced in HF, mitochondrial iron content was maintained. Moreover, we observed a significant increase in heme levels in failing hearts, with corresponding feedback inhibition of the heme synthetic enzymes and no change in heme degradation. The rate-limiting enzyme in heme synthesis, delta-aminolevulinic acid synthase 2 (ALAS2), was significantly upregulated in HF. Overexpression of ALAS2 in H9c2 cardiac myoblasts resulted in increased heme levels, and hypoxia and erythropoietin treatment increased heme production through upregulation of ALAS2. Finally, increased heme levels in cardiac myoblasts were associated with excess production of reactive oxygen species and cell death, suggesting a maladaptive role for increased heme in HF. Conclusions: Despite global mitochondrial dysfunction, heme levels are maintained above baseline in human failing hearts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。