WTAP promotes macrophage recruitment and increases VEGF secretion via N6-methyladenosine modification in corneal neovascularization

WTAP 通过角膜新生血管中的 N6-甲基腺苷修饰促进巨噬细胞募集并增加 VEGF 分泌

阅读:5
作者:Yanhui Bai, Xiaohang Jiao, Jinge Hu, Wenxin Xue, Ziyu Zhou, Weiqun Wang

Background

Corneal neovascularization (CNV) can be caused by chemical burns. Macrophages are involved in angiogenesis and lymphangiogenesis during CNV. The

Conclusion

WTAP affected macrophage recruitment to endothelial cells via regulation of H3K9me3-mediated CCL2 transcription. WTAP also affected macrophage secretion of VEGFA/C/D via m6A-mediated translation regulation of HIF-1α. Both pathways were involved in the WTAP regulation of angiogenesis and lymphangiogenesis during CNV.

Methods

A CNV mouse model was established by corneal alkali burn. Tumor necrosis factor alpha (TNF-α) was used to stimulate vascular endothelial cells. m6A immunoprecipitation qPCR was used to determine the enrichment of m6A levels in mRNAs. The H3K9me3 enrichment in the promoter region of CC motif chemokine ligand 2 (CCL2) was detected by chromatin immunoprecipitation assay. The WTAP inhibition in vivo was performed using the adeno-associated virus.

Results

In the alkali burn corneal tissues, angiogenesis and lymphangiogenesis were promoted as CD31 and LYVE-1 expressions were elevated, and the number of macrophages as well as WTAP expression were increased. Under the TNF-α stimulation, WTAP promoted the recruitment of endothelial cells to macrophages by promoting CCL2 secretion. Mechanistically, WTAP affected the enrichment of H3K9me3 at the CCL2 promoter by regulating the m6A level of SUV39H1 mRNA. The in vivo experiment showed that VEGFA/C/D secretion of macrophages was reduced after WTAP interference. Mechanistically, WTAP regulated the translational efficiency of HIF-1α via m6A modification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。