Bone mesenchymal stem cells promote gastric cancer progression through TGF-β1/Smad2 positive feedback loop

骨髓间充质干细胞通过TGF-β1/Smad2正反馈回路促进胃癌进展

阅读:3
作者:Mengke Fan, Yurui Zhang, Huiying Shi, Lizhi Xiang, Hailing Yao, Rong Lin

Aims

Bone marrow-derived mesenchymal stem cells (BMSCs) have been proven to be recruited into the tumor microenvironment and contribute to gastric cancer (GC) progression, but the underlying mechanism is still unclear. The purpose of this study is to explore the exact role and potential mechanism of BMSCs in the progression of GC. Materials and

Methods

Bioinformatics analyzed were used to clarify the correlation between TGF-β1 and prognosis of gastric cancer. Cell co-culture were used to explore the interaction between gastric cancer cells (GCs) and BMSCs. Quantitative real time-PCR and Western blot assay were used to detect gene and protein expression, respectively. The biological characteristics of GCs and BMSCs were detected by immunofluorescence, Transwell migration, Elisa and invasion assay. Xenograft models in nude mice were constructed to evaluate GC development in vivo. Key findings: TGF-β1 was overexpressed in GC cells and tissues, and is positively related to the poor prognosis of patients. TGF-β1 from GCs activated the Smad2 pathway in BMSCs, promoting their differentiation into carcinoma-associated fibroblasts (CAFs) and TGF-β1 expression. Concomitantly, TGF-β1 secreted by CAFs activate Smad2 signaling in GC cells, thus inducing their epithelial-mesenchymal transition (EMT) and TGF-β1 secretion. BMSCs can dramatically promote the proliferation, migration, and invasion of GCs while blocking TGF-β1/Smad2 positive feedback loop can reverse these effects. Significance: The TGF-β1/Smad2 positive feedback loop between GCs and BMSCs, promotes the CAFs differentiation of BMSCs and the EMT of GCs, resulting in the progression of GC.

Significance

The TGF-β1/Smad2 positive feedback loop between GCs and BMSCs, promotes the CAFs differentiation of BMSCs and the EMT of GCs, resulting in the progression of GC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。