Serum deprivation protein response intervenes in the proliferation, motility, and extracellular matrix production in keloid fibroblasts by blocking the amplification of TGF-β1/SMAD signal cascade via ERK1/2

血清剥夺蛋白反应通过阻断 ERK1/2 扩增 TGF-β1/SMAD 信号级联,干预瘢痕疙瘩成纤维细胞的增殖、运动和细胞外基质的产生

阅读:6
作者:Peilong Li, Mei Han, Liaoyi Wang, Cong Gao

Abstract

Keloid formation has been linked to abnormal fibroblast function, such as excessive proliferation and extracellular matrix (ECM) production. Serum deprivation protein response (SDPR) is a crucial regulator of cellular function under diverse pathological conditions, yet its role in keloid formation remains unknown. The current work investigated the function of SDPR in regulating the proliferation, motility, and ECM production of keloid fibroblasts (KFs), as well as to decipher the mechanisms involved. Analysis of RNA sequencing data from the GEO database demonstrated significant down-regulation of SDPR in KF compared to normal fibroblasts (NFs). This down-regulation was also observed in clinical keloid specimens and isolated KFs. Overexpression of SDPR suppressed the proliferation, motility, and ECM production of KFs, while depletion of SDPR exacerbated the enhancing impact of TGF-β1 on the proliferation, motility, and ECM production of NFs. Mechanistic studies revealed that SDPR overexpression repressed TGF-β/Smad signal cascade activation in KFs along with decreased levels of phosphorylated Samd2/3, while SDPR depletion exacerbated TGF-β/Smad activation in TGF-β1-stimulated NFs. SDPR overexpression also repressed ERK1/2 activation in KFs, while SDPR depletion exacerbated ERK1/2 activation in TGF-β1-stimulated NFs. Inhibition of ERK1/2 abolished SDPR-depletion-induced TGF-β1/Smad activation, cell proliferation, motility, and ECM production in NFs. In conclusion, SDPR represses the proliferation, motility, and ECM production in KFs by blocking the TGF-β1/Smad pathway in an ERK1/2-dependent manner. The findings highlight the role of SDPR in regulating abnormal behaviors of fibroblasts associated with keloid formation and suggest it as a potential target for anti-keloid therapy development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。