Amelioration of circadian disruption and calcium-handling protein defects by choline alleviates cardiac remodeling in abdominal aorta coarctation rats

胆碱改善昼夜节律紊乱和钙处理蛋白缺陷可减轻腹主动脉缩窄大鼠的心脏重塑

阅读:3
作者:Xi He, Si Yang, Juan Deng, Qing Wu, Wei-Jin Zang

Abstract

The key pathophysiological process leading to heart failure is cardiac remodeling, a term referring to cardiac hypertrophy, fibrosis, and apoptosis. We explored circadian rhythm disruption and calcium dyshomeostasis in cardiac remodeling and investigated the cardioprotective effect of choline. The experiments were conducted using a model of cardiac remodeling by abdominal aorta coarctation (AAC) in Sprague-Dawley rats. In vitro cardiomyocyte remodeling was induced by exposing neonatal rat cardiomyocytes to angiotensin II. The circadian rhythms of the transcript levels of the seven major components of the mammalian clock (Bmal1, Clock, Rev-erbα, Per1/2, and Cry1/2) were altered in AAC rat hearts during a normal 24 h light/dark cycle. AAC also upregulated the levels of proteins that mediate store-operated Ca2+ entry/receptor-operated Ca2+ entry (stromal interaction molecule 1 [STIM1], Orai1, and transient receptor potential canonical 6 [TRPC6]) in rat hearts. Moreover, choline ameliorated circadian rhythm disruption, reduced the upregulated protein levels of STIM1, Orai1, and TRPC6, and alleviated cardiac dysfunction and remodeling (evidenced by attenuated cardiac hypertrophy, fibrosis, and apoptosis) in AAC rats. In vitro analyses showed that choline ameliorated calcium overload, downregulated STIM1, Orai1, and TRPC6, and inhibited thapsigargin-induced store-operated Ca2+ entry and 1-oleoyl-2-acetyl-sn-glycerol-induced receptor-operated Ca2+ entry in angiotensin II-treated cardiomyocytes. In conclusion, choline attenuated AAC-induced cardiac remodeling and cardiac dysfunction, which was related to amelioration of circadian rhythm disruption and attenuation of calcium-handling protein defects. Modulation of vagal activity by choline targeting the circadian rhythm and calcium homeostasis may have therapeutic potential for cardiac remodeling and heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。