Conclusion
Gold nanoparticles conjugated to an anti-collagen-I antibody are able to visualize kidney fibrosis in vitro and in situ and may be useful for nondestructive quantification of tissue fibrosis.
Methods
Gold nanoparticles conjugated to an anti-collagen-I antibody were prepared using gold chloride reduction with sodium citrate and coated with polyethylene glycol (PEG), and their size was determined by electron microscopy and nanoparticle tracking analysis. Anti-collagen-I antibody was then conjugated to PEG-SH/COOH on the AuNP surface. The success of antibody conjugation was tested in vitro using collagen-coated plate and mouse stenotic kidney sections and in vivo using micro-CT and multidetector CT imaging.
Results
Bare AuNPs were 18.7 ± 0.6 nm and PEG-coated AuNPs were 45.3 ± 0.1 nm in size. In vitro, Co-I-AuNPs specifically bound to both a collagen-coated plate and mouse fibrotic kidneys. Furthermore, the stenotic mouse kidney showed increased Co-I-AuNPs retention compared with the contralateral kidney (59.3 ± 5.1 vs 45.1 ± 1.7 HU, P = 0.05), which correlated with its collagen deposition. Micro-CT also detected gold signals in situ in the Co-I-AuNP-injected kidney, which colocalized with histological trichrome staining.
