MicroRNA-326 aggravates acute lung injury in septic shock by mediating the NF-κB signaling pathway

MicroRNA-326 通过介导 NF-κB 信号通路加重脓毒症休克急性肺损伤

阅读:9
作者:Chun-Ting Wu, Yan Huang, Zhen-Ye Pei, Xin Xi, Guang-Fa Zhu

Abstract

Our previous studies have demonstrated that the activation of the nuclear factor-kappa B (NF-κB) signaling pathway contributes to the development of lipopolysaccharide (LPS)-induced acute lung injury (ALI) as well as an inflammatory reaction, and its inhibition may provide future therapeutic values. Thereby, this study aims to explore the effects of miR-326 on inflammatory response and ALI in mice with septic shock via the NF-κB signaling pathway. The study included normal mice and LPS-induced mouse models of septic shock with ALI. Modeled mice were transfected with the blank plasmid, miR-326 mimic, miR-326 inhibitor, si-BCL2A1 and miR-326 inhibitor + si-BCL2A1. Mean arterial pressure (MAP), airway pressure (AP), heart rate (HR) and lung wet dry (W/D) ratio were determined. Serum levels of interleukin (IL)-6, IL-10, IL-1β, and tumor necrosis factor-α (TNF-α) were detected using ELISA. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to detect the miR-326 expression and expression levels of BCL2A1, related genes of inflammatory response and the NF-κB signaling pathway in lung tissues. Cell viability and apoptosis were measured using the CCK-8 assay and flow cytometry, respectively. Compared to the ALI models and those transfected with blank plasmid, the up-regulated miR-326 expression and silenced BCL2A1 lead to decreased levels of MAP, increased AP, HR and lung W/D, increased serum levels of IL-6, IL-10, IL-1β and TNF-α, increased expressions of IL-6, IL-1β, TNF-α, NF-κB p65 (p-NF-κB p65), and iNOS with decreased expressions of BCL2A1s as well as inhibition of cell viability and enhanced cell apoptosis; the down-regulated miR-326 expression reversed the aforementioned situation. MiR-326 targeting the BCL2A1 gene activated the NF-κB signaling pathway, resulting in aggravated inflammatory response and lung injury of septic shock with ALI in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。