Evaluation of commercially available small RNASeq library preparation kits using low input RNA

使用低输入 RNA 对市售小型 RNASeq 文库制备试剂盒进行评估

阅读:9
作者:Ashish Yeri, Amanda Courtright, Kirsty Danielson, Elizabeth Hutchins, Eric Alsop, Elizabeth Carlson, Michael Hsieh, Olivia Ziegler, Avash Das, Ravi V Shah, Joel Rozowsky, Saumya Das, Kendall Van Keuren-Jensen

Background

Evolving interest in comprehensively profiling the full range of small RNAs present in small tissue biopsies and in circulating biofluids, and how the profile differs with disease, has launched small RNA sequencing (RNASeq) into more frequent use. However, known biases associated with small RNASeq, compounded by low RNA inputs, have been both a significant concern and a hurdle to widespread adoption. As RNASeq is becoming a viable choice for the discovery of small RNAs in low input samples and more labs are employing it, there should be benchmark datasets to test and evaluate the performance of new sequencing protocols and operators. In a recent publication from the National Institute of Standards and Technology, Pine et al., 2018, the investigators used a commercially available set of three tissues and tested performance across labs and platforms.

Conclusions

The concordance of RNASeq results on these three platforms was dependent on the RNA expression level; the higher the expression, the better the reproducibility. The results provide an extensive analysis of small RNASeq kit performance using low RNA input, and replication of these data on three downstream technologies.

Results

In this paper, we further tested the performance of low RNA input in three commonly used and commercially available RNASeq library preparation kits; NEB Next, NEXTFlex, and TruSeq small RNA library preparation. We evaluated the performance of the kits at two different sites, using three different tissues (brain, liver, and placenta) with high (1 μg) and low RNA (10 ng) input from tissue samples, or 5.0, 3.0, 2.0, 1.0, 0.5, and 0.2 ml starting volumes of plasma. As there has been a lack of robust validation platforms for differentially expressed miRNAs, we also compared low input RNASeq data with their expression profiles on three different platforms (Abcam Fireplex, HTG EdgeSeq, and Qiagen miRNome). Conclusions: The concordance of RNASeq results on these three platforms was dependent on the RNA expression level; the higher the expression, the better the reproducibility. The results provide an extensive analysis of small RNASeq kit performance using low RNA input, and replication of these data on three downstream technologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。