A physiologically relevant, estradiol-17β [E2]-responsive in vitro tissue-engineered model of the vaginal epithelium for vaginal tissue research

一种生理相关的、对雌二醇-17β [E2] 有反应的阴道上皮体外组织工程模型,用于阴道组织研究

阅读:8
作者:Sarah Shafaat, Naside Mangir, Christopher Chapple, Sheila MacNeil, Vanessa Hearnden

Aims

There are many situations where preclinical models of the human vagina would be valuable for in vitro studies into the pathophysiology of vaginally transmitted diseases, microbicide efficacy, irritability testing, and particularly, for assessing materials to be inserted in the vagina for support of the pelvic floor. The aim of this study is to develop a physiologically relevant, low cost, and ethically suitable model of the vagina using sheep vaginal tissue (SVT) to reduce the need for animal testing in gynecological research.

Conclusion

In this study, we have developed an estradiol-responsive TE vaginal model that closely mimics the structural and physiological properties of the native SVT.

Methods

Tissue-engineered (TE) vaginal models were developed by culturing primary vaginal epithelial cells and vaginal fibroblasts, isolated from the native SVTs on decellularized sheep vaginal matrices at an air-liquid interface. Morphological analyses of the models were conducted by performing hematoxylin and eosin staining and further characterization was done by immunohistofluorescence (IHF) of structural proteins and cytokeratins.

Results

Histological analysis of the models revealed a gradual formation of a stratified epithelium on our decellularized matrices and cell metabolic activity remained high for 21 days as measured by the resazurin assay. Our models showed a dose-dependent response to estradiol-17β [E2 ] with an increase in the vaginal epithelium thickness and cellular proliferation under higher E2 concentrations (100-400 pg/ml). The physiological relevance of these results was confirmed by the IHF analysis of Ki67, and cytokeratins 10 and 19 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。