Postsynaptic FMRP bidirectionally regulates excitatory synapses as a function of developmental age and MEF2 activity

突触后 FMRP 根据发育年龄和 MEF2 活性双向调节兴奋性突触

阅读:19
作者:Tong Zang, Marina A Maksimova, Christopher W Cowan, Rhonda Bassel-Duby, Eric N Olson, Kimberly M Huber

Abstract

Rates of synapse formation and elimination change over the course of postnatal development, but little is known of molecular mechanisms that mediate this developmental switch. Here, we report that the dendritic RNA-binding protein fragile X mental retardation protein (FMRP) bidirectionally and cell autonomously regulates excitatory synaptic function, which depends on developmental age as well as function of the activity-dependent transcription factor myocyte enhancer factor 2 (MEF2). The acute postsynaptic expression of FMRP in CA1 neurons of hippocampal slice cultures (during the first postnatal week, P6-P7) promotes synapse function and maturation. In contrast, the acute expression of FMRP or endogenous FMRP in more mature neurons (during the second postnatal week; P13-P16) suppresses synapse number. The ability of neuronal depolarization to stimulate MEF2 transcriptional activity increases over this same developmental period. Knockout of endogenous MEF2 isoforms causes acute postsynaptic FMRP expression to promote, instead of eliminate, synapses onto 2-week-old neurons. Conversely, the expression of active MEF2 in neonatal neurons results in a precocious FMRP-dependent synapse elimination. Our findings suggest that FMRP and MEF2 function together to fine tune synapse formation and elimination rates in response to neuronal activity levels over the course of postnatal development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。