E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts

E2F1-Ror2 信号介导协调转录调控,促进 bFGF 刺激的 NIH/3T3 成纤维细胞中的 G1/S 期转变

阅读:5
作者:Mitsuharu Endo, Yuki Tanaka, Mako Otsuka, Yasuhiro Minami

Abstract

Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。