Hypoxia induced changes in miRNAs and their target mRNAs in extracellular vesicles of esophageal squamous cancer cells

缺氧诱导食管鳞状细胞癌细胞胞外囊泡中 miRNA 及其靶 mRNA 的变化

阅读:7
作者:Fangyu Chen, Li Chu, Jie Li, Yu Shi, Bing Xu, Junjie Gu, Xijuan Yao, Meng Tian, Xi Yang, Xinchen Sun

Background

Extracellular vesicles (EVs) are endogenous membrane vesicles with a diameter of 30-200 nm. It has been reported that hypoxic cancer cells can release numerous EVs to mediate multiple regional and systemic effects in the tumor microenvironment.

Conclusion

This study, for the first time reveals changes in the expression of exosomal miRNAs in hypoxic ESCC cells and these findings will act as a resource to study the hypoxic tumor microenvironment and ESCC EVs.

Methods

In this study, we used ultracentrifugation to extract EVs secreted by TE-13, an esophageal squamous carcinoma (ESCC) cell line during normoxia and hypoxia and performed high-throughput sequencing to detect exosomal miRNAs. Gene ontology (GO) and KEGG pathway analyses were used to reveal pathways potentially regulated by the miRNAs.

Results

A total of 10 810 miRNAs were detected; 50 were significantly upregulated and 34 were significantly downregulated under hypoxic environment. GO analysis identified enrichment of protein binding, regulation of transcription (DNA-templated), and membrane as molecular function, biological process, and cellular component, respectively. KEGG pathway analysis revealed cancer-associated pathways, phospholipase D signaling pathway, autophagy, focal adhesion and AGE-RAGE signaling as the key pathways. Further verification experiment from qRT-PCR indicated that miR-128-3p, miR-140-3p, miR-340-5p, miR-452-5p, miR-769-5p and miR-1304-p5 were significantly upregulated in EVs from hypoxia TE-13 cells while miR-340-5p was significantly upregulated in two other ESCC cells, ECA109 and TE-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。