Late effects of early weaning on food preference and the dopaminergic and endocannabinoid systems in male and female rats

早期断奶对雄性和雌性大鼠食物偏好以及多巴胺能和内源性大麻素系统的后期影响

阅读:6
作者:Patricia Novaes Soares, Rosiane Aparecida Miranda, Iala Milene Bertasso, Carla Bruna Pietrobon, Vanessa Silva Tavares Rodrigues, Elaine de Oliveira, Alex Christian Manhães, Egberto Gaspar de Moura, Patricia Cristina Lisboa

Abstract

Early weaning (EW) is associated with obesity later in life. Here, using an EW model in rats, we investigated changes in feeding behavior and the dopaminergic and endocannabinoid systems (ECS) in the adult offspring. Lactating Wistar rats were divided into two groups: EW, dams were wrapped with a bandage to interrupt suckling during the last 3 days of breastfeeding; CONT; dams fed the pups throughout the period without hindrances. EW animals were compared with CONT animals of the same sex. At PN175, male and female offspring of both groups could freely self-select between high-fat and high-sugar diets (food challenge test). EW males preferred the high-fat diet at 30 min and more of the high-sugar diet after 12 h compared to CONT males. EW females did not show differences in their preference for the palatable diets compared to CONT females. Total intake of standard diet from PN30-PN180 was higher in both male and female EW animals, indicating hyperphagia. At PN180, EW males showed lower type 2 dopamine receptor (D2r) in the nucleus accumbens (NAc) and dorsal striatum, while EW females had lower tyrosine hydroxylase in the ventral tegmental area and NAc, D1r in the NAc, and D2r in the prefrontal cortex. In the lateral hypothalamus, EW males had lower fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, whereas EW females showed lower N-arachidonoyl-phosphatidylethanolamine phospholipase-D and increased FAAH. Early weaning altered both the dopaminergic and ECS parameters at adulthood, contributing to the eating behavior changes of the progeny in a sex-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。