The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations

PARK2 基因敲除小鼠和 PARK2 突变患者的内质网-线粒体界面受到干扰

阅读:18
作者:Clément A Gautier, Zoi Erpapazoglou, François Mouton-Liger, Marie Paule Muriel, Florence Cormier, Stéphanie Bigou, Sophie Duffaure, Mathilde Girard, Benjamin Foret, Angelo Iannielli, Vania Broccoli, Carine Dalle, Delphine Bohl, Patrick P Michel, Jean-Christophe Corvol, Alexis Brice, Olga Corti

Abstract

Mutations in PARK2, encoding the E3 ubiquitin protein ligase Parkin, are a common cause of autosomal recessive Parkinson's disease (PD). Loss of PARK2 function compromises mitochondrial quality by affecting mitochondrial biogenesis, bioenergetics, dynamics, transport and turnover. We investigated the impact of PARK2 dysfunction on the endoplasmic reticulum (ER)-mitochondria interface, which mediates calcium (Ca2+) exchange between the two compartments and is essential for Parkin-dependent mitophagy. Confocal and electron microscopy analyses showed the ER and mitochondria to be in closer proximity in primary fibroblasts from PARK2 knockout (KO) mice and PD patients with PARK2 mutations than in controls. Ca2+ flux to the cytosol was also modified, due to enhanced ER-to-mitochondria Ca2+ transfers, a change that was also observed in neurons derived from induced pluripotent stem cells of a patient with PARK2 mutations. Subcellular fractionation showed the abundance of the Parkin substrate mitofusin 2 (Mfn2), which is known to modulate the ER-mitochondria interface, to be specifically higher in the mitochondrion-associated ER membrane compartment in PARK2 KO tissue. Mfn2 downregulation or the exogenous expression of normal Parkin restored cytosolic Ca2+ transients in fibroblasts from patients with PARK2 mutations. In contrast, a catalytically inactive PD-related Parkin variant had no effect. Overall, our data suggest that Parkin is directly involved in regulating ER-mitochondria contacts and provide new insight into the role of the loss of Parkin function in PD development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。