Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material

使用复合水凝胶和牺牲材料生物制造情人节心形

阅读:6
作者:Qiang Zou, Brian E Grottkau, Zhixu He, Liping Shu, Long Yang, Minxian Ma, Chuan Ye

Abstract

3D bioprinting represents a potential solution for organs regeneration, however, the production of complex tissues and organs that are in large size, randomly shaped, hollow, and contain integrated pre-vascularization still faces multiple challenges. This study aimed to test the feasibility of our 3D printing scheme for the manufacturing of micro-fluid channel networks complex three-dimensional tissue structures. The reverse engineering software was used to design the CAD model and polyvinyl alcohol (PVA) was used as the sacrificial material to print the sacrificial stent use the bioprinter nozzle 1. Hydrogel composite H9c2 and human umbilical vein endothelial cells (HUVECs) were mixed with sodium alginate, agarose solution and platelet-rich plasma (PRP) as cellular bioink, which was extruded through nozzle 2 to deposit the internal pores of the sacrificial scaffold. The scaffold dissolved, change to a flexible, hollow and micro-fluid channel networks complex structure. The 3D-bioprinting technology can construct a micro-fluid channel networks valentine heart with a self-defined height and hollow in suitable mechanical properties. The cells proliferate and maintain their biological properties within the printed constructs. This study demonstrates that valentine heart-like constructs can be fabricated with 3D bioprinting using sacrificial and hydrogel materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。