Regulation of MicroRNA-Mediated Developmental Changes by the SWR1 Chromatin Remodeling Complex

SWR1 染色质重塑复合物对 microRNA 介导的发育变化的调控

阅读:7
作者:Kyuha Choi, Juhyun Kim, Sebastian Y Müller, Mijin Oh, Charles Underwood, Ian Henderson, Ilha Lee

Abstract

The ATP-dependent SWR1 chromatin remodeling complex (SWR1-C) exchanges the histone H2A-H2B dimer with the H2A.Z-H2B dimer, producing variant nucleosomes. Arabidopsis thaliana SWR1-C contributes to the active transcription of many genes, but also to the repression of genes that respond to environmental and developmental stimuli. Unlike other higher eukaryotic H2A.Z deposition mutants (which are embryonically lethal), Arabidopsis SWR1-C component mutants, including arp6, survive and display a pleiotropic developmental phenotype. However, the molecular mechanisms of early flowering, leaf serration, and the production of extra petals in arp6 have not been completely elucidated. We report here that SWR1-C is required for miRNA-mediated developmental control via transcriptional regulation. In the mutants of the components of SWR1-C such as arp6, sef, and pie1, miR156 and miR164 levels are reduced at the transcriptional level, which results in the accumulation of target mRNAs and associated morphological changes. Sequencing of small RNA libraries confirmed that many miRNAs including miR156 decreased in arp6, though some miRNAs increased. The arp6 mutation suppresses the accumulation of not only unprocessed primary miRNAs, but also miRNA-regulated mRNAs in miRNA processing mutants, hyl1 and serrate, which suggests that arp6 has a transcriptional effect on both miRNAs and their targets. We consistently detected that the arp6 mutant exhibits increased nucleosome occupancy at the tested MIR gene promoters, indicating that SWR1-C contributes to transcriptional activation via nucleosome dynamics. Our findings suggest that SWR1-C contributes to the fine control of plant development by generating a balance between miRNAs and target mRNAs at the transcriptional level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。