A lymphocyte-dependent mode of action for imatinib mesylate in experimental pulmonary hypertension

甲磺酸伊马替尼在实验性肺动脉高压中的淋巴细胞依赖性作用模式

阅读:8
作者:Mark L Ormiston, Yupu Deng, Natalie Rundle, Farid Bendjelloul, James N Tsoporis, Thomas G Parker, Duncan J Stewart, David W Courtman

Abstract

The capacity of imatinib mesylate to reverse established pulmonary arterial hypertension (PAH) has been attributed to a reduction in pulmonary arterial muscularization via inhibition of platelet-derived growth factor receptor-β on vascular smooth muscle cells. However, there is also a significant immunomodulatory component to the action of imatinib that may account for its efficacy in PAH. We found that monocrotaline-induced pulmonary hypertension was associated with a significant decrease in pulmonary natural killer (NK) cells and T lymphocytes and the accumulation of macrophages in the lungs of F344 rats. The prevention of pulmonary hypertension by imatinib blocked these changes in pulmonary leukocyte content and induced elevations in pulmonary interferon-γ, tumor necrosis factor α, and IL-10, corresponding to the enhanced activity of splenic NK cells ex vivo. Treatment with anti-asialo GM1 antiserum (ASGM1), which ablated circulating NK cells and depleted T cells, eliminated the therapeutic benefit of imatinib. ASGM1-treated animals also exhibited significant pulmonary arteriolar muscularization in response to monocrotaline challenge compared with immunocompetent controls despite daily imatinib administration to both groups. In the athymic rat, imatinib decreased right ventricular hypertrophy and pulmonary arteriolar muscularization in monocrotaline-challenged animals versus saline-treated controls but did not prevent pulmonary macrophage accumulation or the development of pulmonary hypertension. These data demonstrate that the immunomodulatory effects of imatinib are critical to its therapeutic action in experimental PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。