A Bayesian Nonparametric Approach to Single Molecule Förster Resonance Energy Transfer

单分子福斯特共振能量转移的贝叶斯非参数方法

阅读:4
作者:Ioannis Sgouralis, Shreya Madaan, Franky Djutanta, Rachael Kha, Rizal F Hariadi, Steve Pressé

Abstract

We develop a Bayesian nonparametric framework to analyze single molecule FRET (smFRET) data. This framework, a variation on infinite hidden Markov models, goes beyond traditional hidden Markov analysis, which already treats photon shot noise, in three critical ways: (1) it learns the number of molecular states present in a smFRET time trace (a hallmark of nonparametric approaches), (2) it accounts, simultaneously and self-consistently, for photophysical features of donor and acceptor fluorophores (blinking kinetics, spectral cross-talk, detector quantum efficiency), and (3) it treats background photons. Point 2 is essential in reducing the tendency of nonparametric approaches to overinterpret noisy single molecule time traces and so to estimate states and transition kinetics robust to photophysical artifacts. As a result, with the proposed framework, we obtain accurate estimates of single molecule properties even when the supplied traces are excessively noisy, subject to photoartifacts, and of short duration. We validate our method using synthetic data sets and demonstrate its applicability to real data sets from single molecule experiments on Holliday junctions labeled with conventional fluorescent dyes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。