Direct moxibustion exerts an analgesic effect on cervical spondylotic radiculopathy by increasing autophagy via the Act A/Smads signaling pathway

直接艾灸通过增加Act A / Smads信号通路自噬对颈椎神经根病发挥镇痛作用

阅读:8
作者:Hui-Qian Cai, Xin-Ying Lin, Hai-Yan Chen, Xi Zhang, Yuan-Yuan Lin, Shan-Na Pan, Mei-Xiang Qin, Sheng-Yong Su

Background

Direct moxibustion (DM) is reported to be useful for cervical spondylotic radiculopathy (CSR), but the analgesic mechanism remains unknown. Autophagy plays a protective role in neuronal apoptosis, Act A/Smads signaling pathway has been confirmed to be associated with the activation of autophagy. The study aimed to explore the effect of DM on autophagy in rats with CSR and the involvement of Act A/Smads signaling pathway.

Conclusion

DM exerts analgesic effects by regulating the autophagy to reduce cell apoptosis and repair nerve injury, and this feature may be related to the Act A/Smads signaling pathway.

Methods

Rats were randomly divided into Sham, CSR, CSR + DM, CSR + DM + 3-MA (PI3K inhibitor), and CSR + DM + SB (Act A inhibitor) group. Three days after establishment of CSR model with a fish line inserted under the axilla of the nerve roots, DM at Dazhui (GV14) was performed six times once for seven consecutive days. Western blot and immunofluorescence staining were used to observe the expression of the neuronal autophagy molecule LC3II/I, Atg7, and Act A/Smads signaling molecule Act A, p-Smad2, and p-Smad3. Bcl-2/Bax mRNA expression was measured by real time PCR.

Results

DM improved the pain threshold and motor function of CSR rats and promoted the expression of Act A, p-Smad2, p-Smad3, LC3II/I, and Atg7 in the entrapped-nerve root spinal dorsal horn. DM reduced the expression of Bax mRNA and decreased the number of apoptotic neurons. 3-MA and Act A inhibitor SB suppressed the expression of above-mentioned proteins and reduced the protective effect of DM on apoptotic neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。