Acrolein, an endogenous aldehyde induces synaptic dysfunction in vitro and in vivo: Involvement of RhoA/ROCK2 pathway

丙烯醛是一种内源性醛类物质,可在体外和体内诱导突触功能障碍:RhoA/ROCK2通路参与其中。

阅读:2
作者:Zeyu Zhu ,Junfeng Lu ,Shuyi Wang ,Weijia Peng ,Yang Yang ,Chen Chen ,Xin Zhou ,Xifei Yang ,Wenjun Xin ,Xinyi Chen ,Jiakai Pi ,Wei Yin ,Lin Yao ,Rongbiao Pi

Abstract

Acrolein, an unsaturated aldehyde, is increased in the brain of Alzheimer's disease (AD) patients and identified as a potential inducer of sporadic AD. Synaptic dysfunction, as a typical pathological change occurring in the early stage of AD, is most closely associated with the severity of dementia. However, there remains a lack of clarity on the mechanisms of acrolein inducing AD-like pathology and synaptic impairment. In this study, acrolein-treated primary cultured neurons and mice were applied to investigate the effects of acrolein on cognitive impairment and synaptic dysfunction and their signaling mechanisms. In vitro, ROCK inhibitors, Fasudil, and Y27632, could attenuate the axon ruptures and synaptic impairment caused by acrolein. Meanwhile, RNA-seq distinct differentially expressed genes in acrolein models and initially linked activated RhoA/Rho-kinase2 (ROCK2) to acrolein-induced synaptic dysfunction, which could regulate neuronal cytoskeleton and neurite. The Morris water maze test and in vivo field excitatory postsynaptic potential (fEPSP) were performed to evaluate spatial memory and long-term potential (LTP), respectively. Acrolein induced cognitive impairment and attenuated LTP. Furthermore, the protein level of Synapsin 1 and postsynaptic density 95 (PSD95) and dendritic spines density were also decreased in acrolein-exposed mice. These changes were improved by ROCK2 inhibitor Fasudil or in ROCK2+/- mice. Together, our findings suggest that RhoA/ROCK2 signaling pathway plays a critical role in acrolein-induced synaptic damage and cognitive dysfunction, suggesting inhibition of ROCK2 should benefit to the early AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。