Artifactual FA dimers mimic FAHFA signals in untargeted metabolomics pipelines

人工 FA 二聚体在非靶向代谢组学流程中模拟 FAHFA 信号

阅读:8
作者:Alisa B Nelson, Lisa S Chow, Curtis C Hughey, Peter A Crawford, Patrycja Puchalska

Abstract

FA esters of hydroxy FAs (FAHFAs) are lipokines with extensive structural and regional isomeric diversity that impact multiple physiological functions, including insulin sensitivity and glucose homeostasis. Because of their low molar abundance, FAHFAs are typically quantified using highly sensitive LC-MS/MS methods. Numerous relevant MS databases house in silico-spectra that allow identification and speciation of FAHFAs. These provisional chemical feature assignments provide a useful starting point but could lead to misidentification. To address this possibility, we analyzed human serum with a commonly applied high-resolution LC-MS untargeted metabolomics platform. We found that many chemical features are putatively assigned to the FAHFA lipid class based on exact mass and fragmentation patterns matching spectral databases. Careful validation using authentic standards revealed that many investigated signals provisionally assigned as FAHFAs are in fact FA dimers formed in the LC-MS pipeline. These isobaric FA dimers differ structurally only by the presence of an olefinic bond. Furthermore, stable isotope-labeled oleic acid spiked into human serum at subphysiological concentrations showed concentration-dependent formation of a diverse repertoire of FA dimers that analytically mimicked FAHFAs. Conversely, validated FAHFA species did not form spontaneously in the LC-MS pipeline. Together, these findings underscore that FAHFAs are endogenous lipid species. However, nonbiological FA dimers forming in the setting of high concentrations of FFAs can be misidentified as FAHFAs. Based on these results, we assembled a FA dimer database to identify nonbiological FA dimers in untargeted metabolomics datasets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。