SIRT6-PARP1 is involved in HMGB1 polyADP-ribosylation and acetylation and promotes chemotherapy-induced autophagy in leukemia

SIRT6-PARP1 参与 HMGB1 聚 ADP 核糖基化和乙酰化并促进白血病化疗诱导的自噬

阅读:4
作者:Qian Kong, Yunyao Li, Qixiang Liang, Jianwei Xie, Xinyu Li, Jianpei Fang

Abstract

High mobility group box protein 1 (HMGB1) is an evolutionarily conserved non-histone chromatin-binding protein. In a previous study, we showed that treating leukemic cells with chemotherapeutic drugs leads to the translocation of HMGB1, which is involved in autophagy and ultimately promotes chemoresistance in leukemia. However, the underlying translocation mechanism of HMGB1 in chemotherapy-induced autophagy remains unclear. In this study, we showed that knockdown of SIRT6 or PARP1 gene expression significantly inhibited HMGB1 cytoplasmic translocation and autophagy. Meanwhile, we found that SIRT6, an important upstream protein of PARP1, associated with PARP1, leading to the stimulation of polyADP-ribose polymerase activity. We further demonstrated that SIRT6 and PARP1 activation were required for chemotherapy-induced ADP-ribosylation of HMGB1 in leukemic cells and then influenced the acetylation of HMGB1, finally promoting the autophagy of leukemic cells mediated by HMGB1 translocation. These findings provide new insights into the mechanism of chemotherapeutic drug resistance. Targeting the HMGB1 translocation may overcome autophagy-related chemoresistance in leukemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。