CD206-positive myeloid cells bind galectin-9 and promote a tumor-supportive microenvironment

CD206 阳性髓系细胞与半乳糖凝集素 9 结合并促进肿瘤支持微环境

阅读:6
作者:Elizabeth Ann L Enninga, Kyriakos Chatzopoulos, John T Butterfield, Shari L Sutor, Alexey A Leontovich, Wendy K Nevala, Thomas J Flotte, Svetomir N Markovic

Abstract

In patients with metastatic melanoma, high blood levels of galectin-9 are correlated with worse overall survival and a bias towards a Th2 inflammatory state supportive of tumor growth. Although galectin-9 signaling through TIM3 on T cells has been described, less is known about the interaction of galectin-9 with macrophages. We aimed to determine whether galectin-9 is a binding partner of CD206 on macrophages and whether the result of this interaction is tumor-supportive. It was determined that incubation of CD68+ macrophages with galectin-9 or anti-CD206 blocked target binding and that both CD206 and galectin-9 were detected by immunoprecipitation of cell lysates. CD206 and galectin-9 had a binding affinity of 2.8 × 10-7 m. Galectin-9 causes CD206+ macrophages to make significantly more FGF2 and monocyte chemoattractant protein (MCP-1), but less macrophage-derived chemokine (MDC). Galectin-9 had no effect on classical monocyte subsets, but caused expansion of the non-classical populations. Lastly, there was a positive correlation between increasing numbers of CD206 macrophages and galectin-9 expression in tumors, and high levels of CD206 macrophages correlated negatively with melanoma survival. These results indicate that galectin-9 binds to CD206 on M2 macrophages, which appear to drive angiogenesis and the production of chemokines that support tumor growth and poor patient prognoses. Targeting this interaction systemically through circulating monocytes may therefore be a novel way to improve local anti-tumor effects by macrophages. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。