Role of aquaporin 3 in reproductive performance of dairy goats after repeated estrus synchronization stimulation

水通道蛋白3对奶山羊反复同期发情刺激后繁殖性能的影响

阅读:13
作者:Shuang Sun, Ming Lv, Huimin Niu, Jun Luo

Abstract

This study explored the specific molecular mechanisms through which repeated estrus synchronization (ES) treatments reduce the reproductive performance of dairy goats. Ninety-six goats (n = 24/group) were randomly assigned to two groups receiving ES treatments thrice every fortnight (3-equine chorionic gonadotropin [eCG] and 3-follicle stimulating hormone [FSH] groups) and two groups receiving one ES treatment (1-eCG and 1-FSH groups). ES treatments of 1- and 3-eCG goats were performed via the intravaginal insertion of a controlled internal drug release (CIDR) device containing 300 mg progesterone (P4), followed by 300 IU eCG injections 48 h before CIDR withdrawal. The 1- and 3-FSH goats received CIDR for 10 days, followed by 50 IU FSH and 100 μg PGF2α within 12 h of CIDR withdrawal. Ovaries of three goats in estrus from both groups were harvested for analysis. Subsequently, all the goats in estrus were artificially inseminated twice. Consequently, 3-eCG and 3-FSH goats showed a considerably reduced estrus rate and litter size than 1-eCG and 1-FSH goats. AQP3 mRNA and protein expression were significantly higher in the 3-eCG and 3-FSH groups than in the 1-eCG and 1-FSH groups. AQP3 overexpression led to cell apoptosis and decreased steroid hormone secretion ability of ovarian granulosa cells. Moreover, it resulted in a decrease in maturation and cleavage rates after parthenogenetic activation and in vitro fertilization, respectively. AQP3 gene was involved in reducing the reproductive performance of repeated ES-treated dairy goats. These findings provide a theoretical foundation for the effective use of reproductive hormones in breeding techniques for livestock.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。