Mu opioid receptor-mediated release of endolysosome iron increases levels of mitochondrial iron, reactive oxygen species, and cell death

Mu 阿片受体介导的溶酶体铁释放会增加线粒体铁、活性氧和细胞死亡的水平

阅读:5
作者:Peter W Halcrow, Nirmal Kumar, Emily Hao, Nabab Khan, Olimpia Meucci, Jonathan D Geiger

Conclusions

Opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear downstream of endolysosome de-acidification and Fe2+ efflux from the endolysosome iron pool that is sufficient to affect other organelles.

Methods

We used SH-SY5Y neuroblastoma cells, flow cytometry, and confocal microscopy to measure Fe2+ and ROS levels and cell death.

Results

Morphine and DAMGO de-acidified endolysosomes, decreased endolysosome Fe2+ levels, increased cytosol and mitochondria Fe2+ and ROS levels, depolarized mitochondrial membrane potential, and induced cell death; effects blocked by the nonselective MOR antagonist naloxone and the selective MOR antagonist β-funaltrexamine (β-FNA). Deferoxamine, an endolysosome-iron chelator, inhibited opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS. Opioid-induced efflux of endolysosome Fe2+ and subsequent Fe2+ accumulation in mitochondria were blocked by the endolysosome-resident two-pore channel inhibitor NED-19 and the mitochondrial permeability transition pore inhibitor TRO. Conclusions: Opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear downstream of endolysosome de-acidification and Fe2+ efflux from the endolysosome iron pool that is sufficient to affect other organelles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。