UBAP2L Forms Distinct Cores that Act in Nucleating Stress Granules Upstream of G3BP1

UBAP2L 形成不同的核心,在 G3BP1 上游的成核应力颗粒中起作用

阅读:5
作者:Luca Cirillo, Adeline Cieren, Sofia Barbieri, Anthony Khong, Françoise Schwager, Roy Parker, Monica Gotta

Abstract

Stress granules (SGs) are membraneless organelles that form in eukaryotic cells after stress exposure [1] (reviewed in [2-4]). Following translation inhibition, polysome disassembly releases 48S preinitiation complexes (PICs). mRNA, PICs, and other proteins coalesce in SG cores [1, 5-7]. SG cores recruit a dynamic shell, whose properties are dominated by weak interactions between proteins and RNAs [8-10]. The structure and assembly of SGs and how different components contribute to their formation are not fully understood. Using super-resolution and expansion microscopy, we find that the SG component UBAP2L [11, 12] and the core protein G3BP1 [5, 11-13] occupy different domains inside SGs. UBAP2L displays typical properties of a core protein, indicating that cores of different compositions coexist inside the same granule. Consistent with a role as a core protein, UBAP2L is required for SG assembly in several stress conditions. Our reverse genetic and cell biology experiments suggest that UBAP2L forms granules independent of G3BP1 and 2 but does not interfere with stress-induced translational inhibition. We propose a model in which UBAP2L is an essential SG nucleator that acts upstream of G3BP1 and 2 and facilitates G3BP1 core formation and SG assembly and growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。