Vagus nerve modulates acute-on-chronic liver failure progression via CXCL9

迷走神经通过 CXCL9 调节慢性肝衰竭急性发作的进展

阅读:5
作者:Li Wu, Jie Li, Ju Zou, Daolin Tang, Ruochan Chen

Background

Hepatic inflammatory cell accumulation and the subsequent systematic inflammation drive acute-on-chronic liver failure (ACLF) development. Previous studies showed that the vagus nerve exerts anti-inflammatory activity in many inflammatory diseases. Here, we aimed to identify the key molecule mediating the inflammatory process in ACLF and reveal the neuroimmune communication arising from the vagus nerve and immunological disorders of ACLF.

Conclusions

Our novel findings highlighted that the neuroimmune communication of the vagus nerve-macrophage-CXCL9 axis contributed to ACLF development. These results provided evidence for neuromodulation as a promising approach for preventing and treating ACLF.

Methods

Proteomic analysis was performed and validated in ACLF model mice or patients, and intervention animal experiments were conducted using neutralizing antibodies. PNU-282987 (acetylcholine receptor agonist) and vagotomy were applied for perturbing vagus nerve activity. Single-cell RNA sequencing (scRNA-seq), flow cytometry, immunohistochemical and immunofluorescence staining, and CRISPR/Cas9 technology were used for in vivo or in vitro mechanistic studies.

Results

The unbiased proteomics identified C-X-C motif chemokine ligand 9 (CXCL9) as the greatest differential protein in the livers of mice with ACLF and its relation to the systematic inflammation and mortality were confirmed in patients with ACLF. Interventions on CXCL9 and its receptor C-X-C chemokine receptor 3 (CXCR3) improved liver injury and decreased mortality of ACLF mice, which were related to the suppressing of hepatic immune cells' accumulation and activation. Vagus nerve stimulation attenuated while vagotomy aggravated the expression of CXCL9 and the severity of ACLF. Blocking CXCL9 and CXCR3 ameliorated liver inflammation and increased ACLF-associated mortality in ACLF mice with vagotomy. scRNA-seq revealed that hepatic macrophages served as the major source of CXCL9 in ACLF and were validated by immunofluorescence staining and flow cytometry analysis. Notably, the expression of CXCL9 in macrophages was modulated by vagus nerve-mediated cholinergic signaling. Conclusions: Our novel findings highlighted that the neuroimmune communication of the vagus nerve-macrophage-CXCL9 axis contributed to ACLF development. These results provided evidence for neuromodulation as a promising approach for preventing and treating ACLF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。