Downregulation of Cell Cycle and Checkpoint Genes by Class I HDAC Inhibitors Limits Synergism with G2/M Checkpoint Inhibitor MK-1775 in Bladder Cancer Cells

类 HDAC 抑制剂下调细胞周期和检查点基因,限制其与膀胱癌细胞中的 G2/M 检查点抑制剂 MK-1775 产生协同作用

阅读:5
作者:Michèle J Hoffmann, Sarah Meneceur, Katrin Hommel, Wolfgang A Schulz, Günter Niegisch

Abstract

Since genes encoding epigenetic regulators are often mutated or deregulated in urothelial carcinoma (UC), they represent promising therapeutic targets. Specifically, inhibition of Class-I histone deacetylase (HDAC) isoenzymes induces cell death in UC cell lines (UCC) and, in contrast to other cancer types, cell cycle arrest in G2/M. Here, we investigated whether mutations in cell cycle genes contribute to G2/M rather than G1 arrest, identified the precise point of arrest and clarified the function of individual HDAC Class-I isoenzymes. Database analyses of UC tissues and cell lines revealed mutations in G1/S, but not G2/M checkpoint regulators. Using class I-specific HDAC inhibitors (HDACi) with different isoenzyme specificity (Romidepsin, Entinostat, RGFP966), cell cycle arrest was shown to occur at the G2/M transition and to depend on inhibition of HDAC1/2 rather than HDAC3. Since HDAC1/2 inhibition caused cell-type-specific downregulation of genes encoding G2/M regulators, the WEE1 inhibitor MK-1775 could not overcome G2/M checkpoint arrest and therefore did not synergize with Romidepsin inhibiting HDAC1/2. Instead, since DNA damage was induced by inhibition of HDAC1/2, but not of HDAC3, combinations between inhibitors of HDAC1/2 and of DNA repair should be attempted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。