Protective effects of Erdosteine on interleukin-1β-stimulated inflammation via inhibiting the activation of MAPK, NF-κB, and Wnt/β-catenin signaling pathways in rat osteoarthritis

厄多司坦通过抑制大鼠骨关节炎中 MAPK、NF-κB 和 Wnt/β-catenin 信号通路的激活对白细胞介素-1β 刺激的炎症产生保护作用

阅读:5
作者:Yang Xi, Xiaojian Huang, Genmei Tan, Xiangyu Chu, Rui Zhang, Xiaohu Ma, Bowei Ni, Hongbo You

Abstract

Osteoarthritis (OA), a degenerative arthropathy, is featured with progressive degradation of cartilage and a chondrocyte inflammatory response. Erdosteine (ER) showed the anti-oxidant properties and various anti-inflammatory effects in various diseases. However, whether it protects against OA remains unknown. In this study, we explore the potential therapeutic properties of ER on IL-1β-stimulated rat chondrocytes and its underlying mechanism in vitro and vivo. Cell viability, pro-inflammatory cytokines and the degradation of ECM biomarkers were tested to determine the effects of ER at 10, 20, and 40 μM doses on IL-1β-induced rat chondrocytes for 24 h in virto. In vivo, intra-articular injections of 50 μl of 100 mg/ml ER twice a week for 8 weeks. The results showed ER significantly suppressed the expressions of IL-1β-induced the production of inflammatory factors in a dose-dependent pattern (4.30-fold decrease in COX-2, p < 0.05; 4.77-fold decrease in iNOS, p < 0.05 at 40 μM in protein levels). Moreover, ER could attenuate the degradation of ECM in IL-1β-induced rat chondrocytes by repressing the expression of OA-related factors (2.40-fold decrease in ADAMTS-5, p < 0.05; 3.12-fold decrease in MMP1, p < 0.05; 3.97-fold decrease in MMP3, p < 0.05; and 2.62-fold decrease in MMP-13, p < 0.05 at 40 μM in protein levels). Furthermore, our study revealed that ER could inhibit the activations of IL-1β-induced MAPK and Wnt/β-catenin. Besides, ER could suppress the process of IL-1β-induced P65 from the cytoplasm into the nucleus. In vivo, ER delaied the osteoarthritis progression in rat OA models. Collectively, ER might become a new therapeutic agent for OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。