Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells

型干扰素在甲型流感病毒感染细胞中触发 RIG-I/TLR3/NLRP3 依赖性炎症小体激活

阅读:7
作者:Julien Pothlichet, Isabelle Meunier, Beckley K Davis, Jenny P-Y Ting, Emil Skamene, Veronika von Messling, Silvia M Vidal

Abstract

Influenza A virus (IAV) triggers a contagious and potentially lethal respiratory disease. A protective IL-1β response is mediated by innate receptors in macrophages and lung epithelial cells. NLRP3 is crucial in macrophages; however, which sensors elicit IL-1β secretion in lung epithelial cells remains undetermined. Here, we describe for the first time the relative roles of the host innate receptors RIG-I (DDX58), TLR3, and NLRP3 in the IL-1β response to IAV in primary lung epithelial cells. To activate IL-1β secretion, these cells employ partially redundant recognition mechanisms that differ from those described in macrophages. RIG-I had the strongest effect through a MAVS/TRIM25/Riplet-dependent type I IFN signaling pathway upstream of TLR3 and NLRP3. Notably, RIG-I also activated the inflammasome through interaction with caspase 1 and ASC in primary lung epithelial cells. Thus, NS1, an influenza virulence factor that inhibits the RIG-I/type I IFN pathway, strongly modulated the IL-1β response in lung epithelial cells and in ferrets. The NS1 protein derived from a highly pathogenic strain resulted in increased interaction with RIG-I and inhibited type I IFN and IL-1β responses compared to the least pathogenic virus strains. These findings demonstrate that in IAV-infected lung epithelial cells RIG-I activates the inflammasome both directly and through a type I IFN positive feedback loop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。