Anti-aging effect of phlorizin on D-galactose-induced aging in mice through antioxidant and anti-inflammatory activity, prevention of apoptosis, and regulation of the gut microbiota

根皮苷通过抗氧化和抗炎活性、预防细胞凋亡和调节肠道菌群对 D-半乳糖诱导的小鼠衰老产生抗衰老作用

阅读:7
作者:Huiying Chen, Ling Dong, Xueyan Chen, Chuanbo Ding, Mingqian Hao, Xiaojuan Peng, Yue Zhang, Hongyan Zhu, Wencong Liu

Abstract

Aging is an inevitable and complicated process involving many physiological changes. Screening of natural biologically active anti-aging substances is a current research hotspot. Phlorizin (PZ), an important dihydrochalcone phytoconstituent, has been demonstrated to have antioxidant and anti-tumor effects. In this paper, different doses of PZ (20 and 40 mg/kg) were used to research the protective effect on D-galactose (D-gal)-induced aging mice. Following hematoxylin and eosin staining and by observing the hippocampus, we found that PZ alleviated the damage caused by D-gal in neuronal cells, while PZ enhanced the learning and memory abilities of aging mice in a radical eight-arm maze. In order to explain the reasons for these anti-aging effects, we tested the antioxidant enzyme activity and malonic dialdehyde concentration in mouse serum, liver, and brain tissue. The contents of proteins related to anti-inflammation and apoptosis in brain tissue were analyzed, and the gut microbiota was also analyzed. The results indicated that PZ improved antioxidant enzyme activity while significantly reducing the malonic dialdehyde content. Western blotting analysis suggested that PZ effectively alleviated neuro-apoptosis via regulating the expressions of Bax, Bcl-2, and caspase-3. PZ also exerted anti-inflammation effects by regulating the interleukin-1β/inhibitor of nuclear factor kappa B alpha/nuclear factor kappa-light-chain-enhancer of activated B-cells signaling pathways in brain tissues. Importantly, PZ improved the structure and diversity of the gut microbiota, and the microbiota-gut-brain axis may hold a key role in PZ-induced anti-aging effects. In conclusion, PZ can be used as a potential drug candidate to combat aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。