Expression and function of CCL2/CCR2 in rat micturition reflexes and somatic sensitivity with urinary bladder inflammation

CCL2/CCR2在大鼠膀胱炎症排尿反射和躯体敏感性中的表达和作用

阅读:6
作者:Lauren Arms, Beatrice M Girard, Susan E Malley, Margaret A Vizzard

Abstract

Chemokines are proinflammatory mediators of the immune response, and there is growing evidence for chemokine/receptor signaling involvement in pronociception. Bladder pain syndrome (BPS)/interstitial cystitis (IC) is a chronic pain syndrome characterized by pain, pressure, or discomfort perceived to be bladder-related with at least one urinary symptom. We have explored the expression and functional roles of CCL2 (monocyte chemoattractant protein-1) and its high-affinity receptor, CCR2, in micturition reflex function and somatic sensitivity in rats with urinary bladder inflammation induced by cyclophosphamide (CYP) treatment of varying duration (4 h, 48 h, chronic). Real-time quantitative RT-PCR, ELISAs, and immunohistochemistry demonstrated significant (P ≤ 0.01) increases in CCL2 and CCR2 expression in the urothelium and in Fast Blue-labeled bladder afferent neurons in lumbosacral dorsal root ganglia with CYP-induced cystitis. Intravesical infusion of RS504393 (5 μM), a specific CCR2 antagonist, reduced voiding frequency and increased bladder capacity and void volume in rats with CYP-induced cystitis (4 h), as determined with open outlet, conscious cystometry. In addition, CCR2 blockade, at the level of the urinary bladder, reduced referred somatic sensitivity of the hindpaw and pelvic region in rats with CYP treatment, as determined with von Frey filament testing. We provide evidence of functional roles for CCL2/CCR2 signaling at the level of the urinary bladder in reducing voiding frequency and somatic sensitivity following CYP-induced cystitis (4 h). These studies suggest that chemokines/receptors may be novel targets with therapeutic potential in the context of urinary bladder inflammation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。